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Efficient Nearly Orthogonal Deletion Designs
by
Subir Ghosh*

University of California
Riverside, CA 92521

and
Joan Mahoney

University of California, Irvine and
Hughes Aircraft Company

0. Summarz

This article considers single replicate factorial experiments in
incomplete blocks. A single replicate 2"l x 32 geletion design in in-
complete blocks is obtained from a single replicate 3% (m = m, + mz) pre-
liminary design by deleting all runs (or treatment combinations) with the
firsc m, factors at the level two. JA systematic method for determining
the unbiasedly estimable (u.e.) and not unbiasedly estimable (n.u.e)

factorial effects is provided. Although the method is discussed for

e

single replicate/;ﬁi—x-3méj3;1etion designs in three incomplete blocks,

the method can easily be extended to more than three blocks. . It is shown
that for my > 0 all factorial effects of the type F?l...le |
a, = 0, 1 for i = 1,...,m1, a, = 0,1,2 for 1 = ml+1,...,m, (al,...,am)

#(0,...,0), (am +1,...,am) # a(l,+..,1) where a = 1 and 2, are u.e. and

my

-1)

the remaining factorial effects are n.u.e. It is noted that (2

*The work of the first author is sponsored by the Air Force Office of
Scientific Research under Grant AF0SR-88-0092.
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ol B2
factorial effects of 2 factorial experiments and (3 -3) factorial
effects of 3 factorial experiments, which are embedded in 2 " x 3

factorial experiments, are u.e. The 2 x 3m-l deletion designs were con-

sidered in the work of Voss (1986). Defining factorial effects of a
m m
1

2 x3 2 factorial experiment in a form different than in Voss (198¢), a

simple representation of u.e. and n.u.e. factorial effects is obtained.

m,+1
In this representation, there are (2 1 +1) n.u.e. factorial effects
ay aml %m1+1 %
of the type F. "...F_ 'F seeF "+« This number is smaller than the
1 m, m1+1 m

corresponding number of n.u.e. factorial effects in the representation of
Voss (1986). The relative efficiencies in the estimation of factorial

m n
effects of 2 ! x 3 2 deletion designs are also given.

KEY WORDS: Confounding, Factorial experiment, Single replicate,

Unbiasedly estimable.
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1. Introduction

There is a vast literature on the construction of orthogonal single
replicate factorial designs in incomplete blocks. The reader is referred
to Voss (1986) for the list of references. The concept of deletion
designs was introduced in Kishen and Srivastava (1959). The deletion
technique in deletion designs was then used by many authors (see Addleman
(1962, 1972), Margolin (1969), Sardana and Das (1965), Voss (1986)).

This article considers 2Tl x 3®2 deletion designs in three incomplete
blocks and then presents a systematic method for finding the u.e. and
n.u.e., factorial effects. The smaller values of m; and m, are the most
practically important cases.

For n.u.e. factorial effects, the biased estimators (blased w.r.t
block effects) are called the unadjusted estimators. Under the assump-
tion that certain higher order interactions are negligible, the unbiased
estimation of block effects contrasts and n.u.e. factorial effects,
excluding the general mean, are possible. This makes the deletion design
an orthogonal design. The unbiased estimators of n.u.e. factorial
effects under the assumption are called the adjusted estimators.

The relative efficiency in the estimation of a factorial effect is
the ratio of the variance of the unadjusted estimator divided by the
variance of the adjusted estimator. Observe that for u.e. factorial
effects there is no need for adjustment and hence the relative efficiency
is unity. For n.u.e. factorial effects the relative efficiency is less

than unity. The closer the value of the relative efficiency to unity

implies the lesser effect ~f adiustment to the variance »f the estimstor.




Definition and notation are given in section 2. Section 3 presents
the systematic method of determining u.e. and n.u.e. factorial effects.
Section 4 discusses the relative efficiency with an illustrative

example. Section 5 presents some miscellaneous results.

2. Definition and Notation

m m
Consider a single replicate 2 ! x 3 2 factorial experiment in in-

complete blocks. There are m, m = m + m,, factors in the experiment.

The runs are denoted by (xl,...,xm » X +1,...,xm), where x, = 0,1, for

1 1
i=m + 1,...,m1 and x, = 0,1,2, for i = my+l,...,me The runs and their

i

effects are denoted by the same notation. The factorial effects are de-

a %n %n . +1 Qa

L L 3 m’ where a
1 n

eesF F
o, m1+l

ay = 0,1,2 for 1 = m + 1,.+..,m¢ The observation on the run (xl,...xm)

= 0,1 for { = 1,¢..,m, and

noted by F 1

i

is denoted by y(xl,...,xm]. The fixed effect model assumed is

E(y(xl,...,xm)) = (xl,...,xm) + gj’

V(y(xl"“’xm)) = 02’

Cov(y[xl,...,xm], y(xi,...,x&)) = 0, QY]

where B, is the fixed effect of the jth block containing the run

3

and Bj (j = 0,1,2) are unknown constants. Recall that

the effect of the run (xl,...,xm] is denoted by the same notation

(xl,...,xm). The notation {alx1+...+am xm = ul} represents the sum of

171
ml-l
all 2 points (xl,....xml) which are solutions of a1x1+...+amlxml = Uy
over the Galois Field GF(2), u; = 0,l. Again the notation

m, -1
= 3 oints
{°m1+1xm1+1+---+amxm uz} represents the sum of all p




(xm +1,...,xm) which are solutions of O +1%p +1Treetax = u, over the

1 1 nm

Galois Field GF(3), u, = 0,1. The Kronecker product of

{a X +...+am LI ul} and {am +1%0 +1+...+amxm = u2} is denoted by

1l 1 1t
{alx1+...+am1xm1 = “1} ® {ahl+1xm1+l+...+amxm = “2} and it represents
ml"l mz_l
the sum of all 2 3 run effects (xl,...,x X +1,...,xm) where
1 1
(xl,...,xm ) is a solution of a1x1+...+amlxml = u; over GF(2) and
(xm1+1""’xm) is a solution of am1+lxm1+l+"°+amxm = u, over GF(3).

Example 1. Consider a 22 X 32 factorial experiment. We have m = 2,

m

m, = 2 and m = m, +m, = 4., The notation {x1 +tx, = 0} represents the

sum (0,0) + (1,1). The notation {x3 + 2x4 = 1} represents the sum
(1,0) + (0,2) + (2,1). The Kronecker product {x1 +x, = o} ®
{x3 + 2x4 = 1} represents the sum of run effects, (0,0,1,0) + (0,0,0,2] +

(0,0,2,1) + (1,1,1,0) + (1,1,0,2) + (1,1,2,1).
o S
The factorial effects of a 2 ~ x 3 factorial experiment are

defined in terms of run effects by

a a
Fal F mlF M Fam
1 LN N ] m m +l LK N ] m

1 1
= [Fo{alx1+...+amlxml = 0} + cl{a1x1+...+amlxm1 = 1}]

® [do{am1+lxm1+1+'°'+amxm = o} + dl{am1+lxml+1+'”+amxm = 1}

+ dZ{Gm +1xm +1

1 1

+esota x = 2}] » (2)
m m

d. and d, are given in Table 1.

where the coefficients Sy Cp» dO’ 1 2




Table 1

The coefficients ¢4, ¢y, dg, d, and d, in the equation (2

c0 ¢y d0 dl d2
(°1""°m1)' =9 (“m1+1""’“m)' =0 1 1 1 11
+ 0 =0 | -1 1 1 11
=0 *0
(1) the first nonzero element in 1 1 -1 0 1
[(lml+l,ooo,0m) is 1.
(1i) the first nonzero element in 1 1 1 -2 1
(le.'_l’ooo,um) iS 20
#_(_)_ #9_
(1) the first nonzero element in -1 1 -1 0 1
(aml+l,...,am) is 1.
(1i) the first nonzero element in -1 1 1 -2 1
(le+1,ooo,(!m) is 2.

2
2F3 is defined by

FoFd = [=lxy = 0} + {x, = 1}] @ [{x3 = 0} -2 {xy = 1} + {x5 = 2}]

= [-(0,0) - (1,0) + (0,1) + (1,1)]
2
)

Example 2. In Example 1, the factorial effect F

® [(0,0) + (0,1) + (o,

+(2,0) + (2,1

)
) -2 (1,0} -2 (1,1) -2 (1,2)
+

2,2)]

= - (0,0,0,0) -...+2 (0,0,1,0) +...= (0,0,2,0) =ouut (1,1,2,2,]).

Bl

Bl

It

re



m m
A2 1 x 3 2 deletion design D in three incomplete blocks 1s de-

scribed below. The deletion design D is used throughout the discussion.
Consider a 3™ factorial experiment in 3 blocks by confounding the two

degrees of freedom in FIF ...Fm and FZFZ...Fé. The block u consists of

2 1°2

runs which are solutions of the equation x1+...+xm =43y, u=20,1,2, From

every block, the runs with the level 2 for the first m,y factors are

m, mz-l
deleted. The resulting design is D with 2 ° x 3 runs in every
block. It is assumed that m, > 1. The design D for m, = O is discussed
in Section 5.

Example 3. The runs in the three blocks of a 22 x 32 deletion design D

are given below.

9 o o0 1! 1 1 0 0 0 1 1 1
o o 0o o0 o0 o0 ! 1 1 1 1 1
Block 0 0o 1L 2 2 0 1 2 0 1 1 o0 2
o 2 1 0 2 1 0 2 1 0o 1 2
o o o 1 1 1 0 o0 o0 1 1 1
o 0o 0 0 o0 o0 1 1 1 1 1 1
Block 1 1 0 2 0 1 2 0 1 2 2 0 1
o 1 2 0 2 1 0 2 1 0o 2 1
0o 0 0 1 1 1 0 0 o 1 1 1
o 0 o0 o0 o0 o0 1 1 1 1 1 1
Block 2 2 0o 1 1 0 2 1 0 2 o0 1 2
o 2 1 o0 1 2 0 1 2 0 2 1

It is to be noted that in every block there are 12 runs and the columns

represent the runs.




The least squares estimators of u.e. factorial effects
o @ T %

F, «esF_ 'F eeoF ® g F l...F F «ooF ™ which is obtained by re-
m 1 m n

%

1 m, ml+1 1 ml+l

placing the run effect (xl,...,xm) with the observation y(xl,...,xm) in

(2). For n.u.e. factorial effects, the same method yields biased (non-

adjusted) estimators.

Let Bu(u = 0,1,2) be the sum of all run effects in the uth block.

Let X = - B1 + B2 and Y = ZBO - B1 - 82. Clearly X and Y are confounded

with the blocks in D. Let B (a X, teeeta x

ut 171 m,"m,

denote the sum of all run effects satisfying Xy teeeta, x, = i in the
171

o =1),1=0, 1, u = 0,1,2,

uth block. Notice that B, = Bu(alx1+...+umlxml = 0) +

Bu(alx1+...+am1xm1 = 1).
Example 4. Consider the block O in Example 3. Observe that

]
—_
o
-
o
o
-
o
A
+
™
o
-
(=
-
P
-
N
pr—
+
~~
o
c
-
N
[

Bo(x1 + Xy = 0)

+

o
+
p—
-
(=]
-
(=]
-
[
+
~~ —_
p—
-
(=]
-
—
-
—

(
Bl(xl +x, = 1) + (1,0,2,
(

+ (0,1,2,0) + (0,1,0,2) + {O,1,1,1}.
Denote
F® P X = - [B(ax +eeeta x = 1) = B (ax +eeeta x = 0)]
1 e ml 1 lxl soe mlxml 1 lxl X mlxml
+[BZ(°1x1+"'+°m Xm - l) - BZ(°1x1+"'+°m Xm = 0)])
171 171
a
a m

FloeeoFp Y = 2 [Boayx #eeuta x = 1) = Bo(ax +eeeta x = 0)]

1 11 1™ 11 !
= 0)]!
1

-[Bl(alxl+ooo+am xm = 1) - Bl(alxl'h..ﬂlm X
-[Bz(alx1+...+am xm = l) - Bz(alx +.e0ta xm = 0)]. (3)

| 1 ™
! 1 e




3. Properties.

In this section the u.e. and n.u.e. factorial effects under D are

given. It is assume that m2<2 1.

a cxm am +1 a

1 1 m
1 ‘.'le Fm1+1 ...Fm for
(um1+1,...,am) #a (l,ees,1), @ = 1,2 and (al,...,am) # (0,...,0), are

u.e. under D,

Theorem |l. The factorial effects F

Proof. When (am +1,...,am) #al1,00s,1) and (ul,...,am) #(0,...,0), it

1
m m -1
can be seen that 2 3 rurs in a block can be divided into six sets
ml-l mz_z
of 2 3 runs satisfying a,x,+es.ta x =y, and
171 W, m, 1
um1+1xml+1+...+amxm = Uy, u; = 0,1 and u, = 0,1,2. 1t now follows from

N\

a
al ml olln1+1 a

(1) and (2) that in E(F I F eeoF m), the block effects cancel
1 @, m1+1 m
ay aml % +1 a
and it becomes equal to Fl eeoF F eseF o This completes the proof.
m, m1+1 m

2
1°® 3 F3) 4

2 2 2 2 2 2 2 2
Fo» FyF2, F3F,, F\Fa, F\F3, FF,, F/FZ, F\FFZ, F F2F , F Py, FF2, FoF,,

2 2 2 2 2 2 2

Example 5. 1In Example 3, the factorial effects F FZ, FlFZ’ F F

are u.e. under D by Theorem 1.

a
a ()

Theorem 2. The factorial effects F l...F 1F eesF and
—_—_—— 1 @, m1+1 n

% o) 4 2
F, «e.F F +esF” are n.u.e. under D (i.e., they are confounded with

1 o, m1+1 m
blocks in D).

@, m2-1

Proof. Consider the uth (u = 0,1,2) block in D. Out of 2 3 runs in

the uth block, 2 3 runs satisfy x1+...+xm = 0 over GF(2) and

1
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m,~1 m,-1

X teeetx = u over GF(3). The remaining 2 3 runs satisfy

m1+l

Xyteootx = ] over GF(2) and +esetx_ = u = 1 over GF(3). Out of
1 ml xm1+l m
ml—l m2-1 m1-2 m2-1
3 runs satisfying x1+...+xm =i, 1 =20,1, 2 3 runs
1

satisfy alx1+...+cxmlxml =3j, j =0,1, and (al,...,aml) * [1,...,1],

2

(O,...,O). It is now clear from the definition (2) of

Qa a
ay m, mprl e
Fl coole le+1 ocaFm With aml+1-oc-'am = a, Q= 1,2, that in
—a o~
al m1 m1+1 am
E(F,"...F_ 'F «..F ™) the block effects do not cancel. This
1 m1 m1+1 m

completes the proof.
2.2
. F
Example 6 In Example 3, the factorial effects F3F4, F3Fa, 1F3F4’

2.2 2.2 2.2
L] L] t
F2F3F4, F1F2F3F4, F1F3F4, F2F3F4 and F1F2F3F4 are not u.e. in addition to

the general mean u.

o) “m a Cm
eooF X and F, «..F " Y with (a,,eee,a ) #
1 o, 1 m, 1 o,

(0,...,0), defined in (3) are u.e.

Theorem 3. Under D, F

) m, m,-1
Proof. 1In the uth {[u = 0,1,2) block of D, 2 1372 " runs can be divided
ml-l m, -1

into 2 sets of 2 3 runs each satisfying a. x +...+c|.m X, = i, 1 =

171

/\Cl /\0.
a m a ml

1 1 1
1 ...le X) and E(F, ...le
the block effects cancel. The rest is clear. This completes the proof.

0,1. It now follows from (1) that in E(F Y)

Observe that u, X, Y are confounded with blocks in D. The

m m a Olm °m +1 a
1 1 . 1 1 1 m
2 3 "=2)=1) facto:"al effects F, ...F F eeoF with
1 m m, +1 m

1 1

(am1+1,'oo,am) # a(l,...,l), a = 1,2 and (al,-..,(!m) * (O,OD')O)) are
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m
u.e. under D, The (2 1—1)2 linear functions of factorial effects
a a
@, ™, @, m,
F1 ...le X and Fl ...le Y with (al,...,aml) # (0,...,0], are u.e. under

ml m

™2 1 i P
D. The above [3 + (2 (3 -2)-1) + (2 -1)2] =2 73 linear functions

of factorial effects are othogonal to each other.

4, Relative Efficiency

In this section the relative efficiences of n.u.e. factorial effects

are calculated. First note that

/C!\\ Qa
* T a a al ") a a
E(Fl a.ole le"'l...Fm) = Fl tocle le"'l..‘Fm + (d060+d181+d282), (4)
where do, d1 and dz depends on the values of ;s i= 1,...,ml and
—_— e T
* " a a
a, a = 1,2. The estimator F, "«..F F «eeF  is called the unadjusted
1 m, m1+1 m
@ my g a
estimator of F1 P F +ooF and it 1is denoted by
@, ml+1 m
a /%
(F 1...F lFa ...Fa) o It can be checked that
1 @y m1+l m ‘unadj
— o,+l m,~1
o m 2,1 2
1 n, m,+l m’unadj m,+l m (5)
1 1 2.1 2
o 2 3 for a = 2,

my -l
It can be seen that out of 2 ! points (xl,...,xm ] satisfying

1
&

x1+...+xml = 0 over GF(2), n,, Points satisfy x1+...+xml =y, u=20,1,2,
ml"l
over GF(3). Again, out of 2 points (xl,...,xm ) satisfying
1

x1+...+xml = 1 over GF(2), n;, Points satisfy x1+...+xml =y, u=20,1,2,
ml-l

= n +n + n = 2 « It can

Mo * 0 10 T M1 12

over GF(3). Clearly, n

00 ¥ Bo1 * Mp2

be check that
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m
1
= T ( ] , N = T
>0 3w 0l >0

w even integer w odd integer

(3w+1) ’

E (ger2) : (50
n,, = y Do = .
02 w>0 Jw+2 10 w0 3w
w even integer w odd integer
o !

(3w+2) ‘ (6)

n,, = b ( ) s Ny, = )
11 >0 3w+l 12 >0

w even integer w odd integer

Under the assumption that the factorial effects F ...Fm F:

a = 1,2, are negligible, it follows that

E(F....F ¥ F) =32 [(n, . )
1°° m, m1+1"' m’‘unadj ' 10 12 700 02772

+ (0,1 Mg2*m0 )8y *+ [y gm0y +M0g)80 15

gl 2 my!
E(Fl'"leFm1+1"°Fm)unadj = 3% [(nyg-2a; ) ymmgq* 200, 0y ) (

+ (n),=2n 04 g, + 2000 )8y + (n)=2n,*n g g *2092 R0 ) oy
(a

Apyese, ml) # (1,...,1), the adjusted estimators of factorial

a %n
l.a

1 o
effects F1 ...Fm Fm +1...Fm are

For

1 m, m,+] m ‘unadj
LY

(F,...F. F F )
gLFpeee m, ml+1 *"m’unadj
where vy and w, are constants depending on a and (al,...,am ). Notice E

1

+ w + WZ(F esoF F ocon) (8)

1 m, m,+1 m‘unadj’ o

a a
o0 o0 0 the n
that under the assumption that F1 lele+l Fm are negligible, (

a 31
a m
factorial effects F loooF lFa oo.Fa, (Q geve,Q ) # (ll"')l)’

1 m, ml+l m 1 o, th
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a %n
l.a

a=1,2, are u.e. and the adjusted estimators of F 1...F F ...Fa,
1 @, m1+1 m

(al....,am ) * (1,...,1), a=1,2, are in fact unbiased estimators. The
1

unbiased estimators of factorial effects (except the general mean) are
orthogonal to each other and hence the deletion design is orthogonal

under the assumption that Fl"'Fm F: +1...F:, a = 1,2, are negligible.
171

The effect of adjustment is now evaluated in terms of the variance of the

‘estimators. It cn be seen from (8) that for (al,...,uh ] # (1....,1),
1

N m,+]l m,-1
ay aml 022 ! 3 2 (1 + wz + 3w§] for a=1,
V(F oooF Fa oo-Fa) = 1
1 m, m1+l m’ adj 2 m1+1 mz-l 2 ) (9
0“2 3 (3+w1+3w2)fora-2.
*1 aml a a
The relative efficlency in the estimation of F. ,..F_ F eeoF
1 o, m1+1 m
(al,...,aml) # (1,...,1) is
o~
a m 1
1 l.a a for a =1,
V(Fl LI +1°"Fm)unadj 1+ wl+ 3w
1 1 1 2
RE = =
/
o °;I\“ o 423 for a = 2, (10D
v(F1 ...le Fm1+l...Fm]adj. 34w+

Notice that 0 ¢ RE { 1. For u.e. factorial effects RE = | and for
n.u.e. factorial effects RE < 1. Further the value of E away from 1 the

more is the effect of the adjustment to the variance of the estimator.

00 ~ (3)’ L

= (0., Under the

Example 7. In Example 3, R, equals to 2 and moreover, n

=(3) =1, n 2

7 1) = 2 and n

n =

01 » Bo2 ’0'“1"(

10 12

1
2.2
assumption that F1F2F3F4 and F1F2F3F4 are negligible, it follows from (7)

that
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P
E(F)FyF3F, ) unaay = 2 (= 81 + 8g),
/\

2.2
E(F F,F3F,) = 9(- 28, + B + By).

unadj

It can be seen that
N
E(F1F3F4)unadj = FFqF, + 3(- 28, + B, + 8,).
Thus

P o~ 1 //fi 2
(FyFoF Daas = (FiF9F4)unags = 5 (F1FoF3Fu)unaas

Therefore, from (8), a = 1, v, == %.and v, = 0., Hence from (10),
RE=__1 &3
1y2
1+3( -
3

= ,75.

Table 2 presents the values of Wiy Wy and the relative efficiencies
for factorial effects. It is to be noted that the relative efficiences
for all 6 factorial effects are wmore than .75 and therefore the adjust-
ments do not have large effects on the variances of the estimators. The
deletion design with such high relative efficiencies can be considered as

a near orthogonal design.
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Table 2

Efficiencies for 2% x 32 deletion designs

Factorial
Effects a w w RE
1 2
F.F 1 -1 0 90
34 3 .
2.2 1
F3F4 2 0 3 «90
F F_F 1 0 -1 75
134 3 ¢
F.F.F 1 0 -4 75
2°3°4 3 .
2,2
F1F3F4 2 1 0 75
2,2
F2F3F4 2 1 0 75
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5. Miscellaneous Results

In this section the case w, = 0 1.e., m, = is considered for the
sake of completeness. The u.e. and n.u.e. factorial effects for a 2%
deletion design are displayed. It is a feeling that the deletion design
for the case o, = 0 is of lesser practical importance than the deletion

designs for the case m, > 0.

Theorem 4. Under a 2™ deletion design D, the factorial effects

a
Fll...me for all G yeee,a are not u.e.

Proof. First observe that three blocks in D can not be of equal sizes

and therefore the block sizes can not all be even. The rest is clear
a a

from the definition of Fll...me. This completes the proof.

Denote the number of nonzero elements in a vector (al,...,uh) by

w[al,...,am). For w = 0,1,...,m, denote
%] %n
oanFm H W(al,...,am) = W}o (11)

Notice that Ao congists of the general mean, Al consists of all main

effects, A2 consists of all two factor interactions and so on.

Theorem 5. For a w (* O,m) all contrasts of the elements in A, are u.e.

Proof. Consider two vectors (al,...,am) and (af,...,a*m) so that

W(al,...,am] = w(af,...,a;] = W (* 0). It can now be seen that in

every block, the number of runs satisfying a . x,+...+a x = u is exactly
171 nm

identical to the number of runs satisfying afx +...+a;xm =y for u = 0,1.

1

The rest is clear from the definition of factorial effects and the model

(1)-




Example 8. The three blocks in a 2" deletion design are given below.

0 1 1 1 0
0 1 1 0 1
Block O 0 1 0 1 1
0 0 1 1 1
1 0 0 0 1
0 1 0 0 1
Block 1 0 0 1 0 1
0 0 0 1 1
1 1 1 0 0 0
1 0 0 1 1 0
Block 2 0 . 0 ) 0 1
0 0 1 0 1 1

Notice that the Blocks 0 and 1 are of the same size 5 and the Block 2 is

of the size 6. For the set A1 = {Fl’FZ’ F3,F§,F4,F§}, it follows from

Theorems 4 and 5 that all the elements in A1 are n.u.e, but every
contrast of elements in A1 is u.e.

Theorem 6.
% %n
(a) For aw, T Fl ...Fm is n.u.e. under D.

A
w

(b) The linear function of factorial effects COBO + CIBI + czB2 with
4 + ¢ + c, = 0 is n.u.e. under D.

(¢) For a w(#? 0,m),
a a
LooF ™4 (¢ B, +cB, +c,B
1 m

L ¥ 0B * ©1B; * ¢,B,)

A
w

with o + cp te,= 0, is u.e. under D.

&

Proof. The part (a) can be seen from Theorems 4 and 5. The part (b) is
obvious. The part (c) follows from the block structures in D. This

conpletes the proof.
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